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Absbact. The role of f-elenmn charge fluctuations in heavy-fermicm systems is discussed and 
the tunnelling current BS a probe bf charge speeual density nex the Fermi level is caldated 
uithin pertuhation theory using the transfer Hamiltonian approach. It is shown thq in the 
case of integer valence systems only c electrons f& a wide conduction band contribute to 
the tunnelling cur”. One finds only a weak reflection of the strong mass enhancanent in 
the I(U) c w e s ,  but the tunnelling conductance (and ifs derivative) can still be used for the 
study of spin excitations in the liquid formed by f spins. An mamination is then made of the 
mired-valence-type heavy-fermion mpoundr. this case f electrons dominate in the current, 
and in s m e  regimes the exact results for Ihe arbitrary C w l m b  interaction between the c andf 
eledms are derived. It is shown that because of the ‘shaking up’ of the polarcm cloud around 
the f electron during the tunnelling p y e s s  the current acquires a non-analytic +deuce on 
elccVic potential and temperature. Both n a m  f-band and o f  hybridhian peaks u e  smdied 
in detail. 

1. Introduction 

The question of whether charge or spin degrees of freedom dominate in the heavy-fermion 
(HF) ground state seems to be of primary importance in understanding the nature of HP 
systems. In this connection Cnelling properties of these systems, which are governed by 
tunnelling transitions of charged particles, might be very interesting. 

Universal behaviour of the HF systems, which can be characterized by a single energy 
parameter TK, makes one think about the common nature of these systems (see, for 
example, [1,2]). However, even a brief analysis reveals two classes of HF systems with 
quite different microscopic properties. The 6rst class is characterized by nearly integer 
valence of the f ion. the deep position of the f level and strong on-site Coulomb repulsion. 
Cebased compwnds are the typical examples. It is generay believed that these systems are 
adequately described by the Kondo-lattice Hamiltonian considered as the limiting version 
of the periodic Anderson model. One can expect that electrons fiom the deep f shell will 
give negligible contribution to the tunnelling current at small voltages /U( << EF - E‘. In 
this case the current is defined by the tunnelling of elecuons from the wide conduction 
band which, itself, is strongly renormalized by inelastic scattering on the spin sub-system. 
In [3,4] the idea was propsed to ascribe the low-frequency HF peak in the density of states 
to neutral excitations of the spin liquid. Low-temperature excitations in this liquid obey 
the Fermi statistics and cany no charge. In its turn, the interaction between the conduction 
elecmns and spin liquid resuh in a strong electron mass enhancement, m; > m~ (where 
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mB is the bare hand mass) which, however, in the general case is smaller than the effective 
mass, mH, characterizing the low-temperatw thermodynamics of HF systems. 

Below, we show that large enhancement of the conduction hand density of states at 
energies E c TK is only slightly reflected in the smcture of the tunnelling current. This 
important result should he compared with mean-field theory (see, for example, [5,6]),  which 
predicts a noticeable contribution o f f  electrons to the current with strong dependence /(U) 
at small U. As discussed in [31 we believe that the appearance of the f-electron charge 
near the Fermi energy in this case is connected with the artilicial charge h'ansfer to the spin 
degrees of freedom. Nevertheless, the derivatives of the current over voltage are directly 
related to the spec!ml density of spin excitations. In fact, one can use this possibility for 
studying the low-temperature properties of the spin tiquid 

An itinerant (mixed-valence) type of f-electron excitations is characteristic of the case 
with the f level close to the Fermi energy. The formation of the HF state could then be 
connected with the f-electron charge degrees of freedom. An extremely narrow peak (10K) 
in the density of states could result from a strong electron (and phonon) polaron effect 
due to the Coulomb interaction between the f electrons in a moderately narrow hand and 
the conduction electrons in a wide band. The same effect of polaron narrowing is found 
for the conventional hybridization Hamiltonian [7,S]. In both cases the f electrons may 
give the dominant contribution to the tunnelling current. One can clearly reveal polaron 
renormalizations in the non-hivial current-voltage curves which appear to be the result of 
'shaking up' the polaron cloud around the f electron during the tunnelling. The important 
thing is that /(U) (or d//dU) reflects the existence of the HF peak in the density of states. 
Thus, the tunnelling current behaves quite differently in the Kondo-lattice and mixed-valence 
regimes, and can he used for the comparative analysis between HF systems with the goal to 
reveal the role of charge fluctuations in formation of the HF state. 
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2. 'hnnelling current in the integer valence case (Kondo lattice) 

Let us consider the tunnelling between the HF and usual metal. We assume an idealized 
picture, implying unperturbed electronic properties of both metals up to the boundary of 
the barrier, which could be either a vacuum separation or a dielectric layer. In this case 
the current can he calculated within the lowest-order perturbation theory using the transfer 
Hamiltonian appoach 

Here Tkk, is the tunnelling matrix element, c b  and ab- are the electron annihilation operators 
in HF and usual metals respectively. Within the framework of perturbation theory in the 
tunnelling amplitude the general expression for the tunnelling cunent has the form [9] 

where 
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Here GF@, o) is the retarded Green functionJhe indexes c, a are related to the HF and usual 
metals, and n, is the Fermi distribution function. Coulomb blockade effects in tunnelling 
between the HF and normal metal are ignored in this paper assuming not too small  a size 
for the tunnel junction. 

Suppose, that the density of states in the metal a is a weak function of energy near the 
Fermi level with small electron-phonon renormalizations. Then the function A.@', 0') can 
be written in the form 

A,@', 0') W S(d - ~ p ' )  

at least in the small frequency range characteristic of the k~ metal. Substituting this 
expression into (2) we find 

I = 4 n e x  ITdI2 / dw S(o + U - ep , ) (n ,  - n&u)Ac@;u). (4) 

It is essential that the-answer depends only on the one-particle Green function. This is an 
obvious simpliication as compared with the usual conductivity, which must be calculated 
from the two-particle Green function. 

In this section we consider HF systems with the f level deep enough under the Fermi 
energy. If we assume as well the on-site Hubbard repulsion between f elecuons to be much 
larger than EF - ef, we then come to the typical limiting case of the periodic Anderson 
model usually described by the Kondo-lattice Hamiltonian: 

Pp' 
, .  

. -  

where U; = c&uc;., is the conduction electron spin operator at the site i, U is the Pauli 
matrix, and Xi is the f-electron spin operator. The interaction term in the Hamiltonian 
(5) corresponds to the spin exchange between the wide-band electrons and the localized 
f shell. This Hamiltonian results in an indirect interaction between the spins, the local 
Kondo-renormaliiation of the spin exchange etc. These interactions connected with the 
virtual high-frequency excitations $I the wide band lead to the adiabatic spechum of spin 
excitations in xhe narrow energy interval of o@er of TK. In close analogy with the well 
known problem of deriving the adiabatic phonon spectrum in metals [IO] one can neglect 
afterwards all non-adiabatic corrections tb the specr" of spin excitations. Bearing this fact 
in mind we can write down the effeitive low-frequency Hamiltonian in a form corresponding 
to the two-component Fermi liquid 

(6) 

where H a  is the spin liquid Hamiltonian, and Hbt contains only the low-energy part of 
the interriction (in the general case with another exchange colipling Tj. Below, we a s s h e  
a weak exchange interaction, pcT << 1, where pc is the c-electron density of states on the 
Fermi surface. In this case we can neglect vertex renormalization in Hk,. 

For the Kondo-lattice Hamiltonian the tunneUig current is entirely deEned by 
conduction electrons renormalized through their interaction with the spin liquid. To find 
the Green function G:@, o) we have to evaluate its self-energy pm, which to the lowest 
order in pcT is described by the diagram 

H = HB + HSL + Hbt 
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Here 6" = zT(2n + 1) and om = 2 x T m  are the Matsubara frequencies. and &, = ep - p 
is the energy of the electron excitations. In the general case the spin liquid polarization 
operator has the form 
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rm 

The spectral density P ( E )  is the intemal characteristic of the spin liquid. If excitations in 
this liquid are fermions, then 

We are interested in the renormalization of the electron spectrum at energies and 
temperaturas within the interval - Ts. In this caSe the integration over small 5 gives 
the main conuibution to the self-energy past. therefore one can integrate separately over 
the energy and the momentum direction p'/p' on the Fermi surface. Neglecting the 
conaibutions of order of (& and Ts/ W (where W - g is the electron bandwidth) one 
has the universal expression for the self-energy part 

n m  = (WP - P t .  o m ) )  (11) 
where (. . .) stands for the average over the angle between the vectors p and p' on the Fermi 
surface. The sum over m from LE/(& + E') in (8) is a standard one (see [ll]). Thus we 
get 

~ ~ = - p = ~ ' J d E P ( E ) ( i ~ c o t h - + Q  E -+- G - ~ E  - y  -+- E,, + iE 1 
2T ( 2  27rT ) (i 2nT ))sgn(n) 

(12) 
where Y is the logarithmic derivative of the r-function. To find the retarded Green function 
which is analytic in the upper half-plane we make use of the analytic properties of the Q 
function and simply replace E ,  in this expression with -io. 

We now return to (4) and complete the averaging over the momenta p and p' on the 
Fermi surface, making use of the fact that the self-energy part is independent of p .  Then 

= 4 7 ~  d o  (n, - ~ , + I J )  \ d6 T Z U .  0 + U)P&)P.(O + WA&,  0). (13) 

Here T'(5, 6') is the averaged value of the tunnelling mahix element modulus, squared. 
Assuming a weak non-singular dependence of T'p,p, on f and 6' for small arguments, we 
can resmict ourselves by linear expansion: 

T2(6.C')pCO)p.(6') =?(I +ort+Bf'). (14) 
Usually the coefficients a! and B reflect the exponential dependence of the tunnelling 
amplitude on the electron energy [IZ]. Substituting this expansion back into (13). and 
using the fact that the A, function has a sharp peak at = a, we find 

I = 4rret' do (n ,  - n,+o)p, (15) 

(16) po = 1 t o1(0 - Rex:) +B(o + U) t yIm E:. 

J 

s 
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The last term arises from the difference between the Im GR and the real 6 function. Note 
that there is no special smallness in y with respect to the coefficients a and p.  

In the absence of electron renormalization the expression for the current takes the form 

Taking into account that a, p and y are of the order of 1 /  W (or S/ W, where S is the 
tunnelling exponent) we find that correction to the zero-order expression is smal l  if the scale 
of the elemon specmm renormalization is small compared with the bandwidth. However, 
one can easily extract this corr&tion 

AI = 4neP d~ (n,  - n,+u)(-aRe c," + yIm c:) (18) 1 
experimentally because its dispersion is concentrated in the region of very small electric 
potential U - TK. Thus, all information about the interaction can be obtained by measuring 
the conductance, U((/) = dl/dC' and its derivative, dzI/d2U. The essential fact is that 
studying odd. U*, and even, U=, conductances we can separate. the contributions from real 
and imaginary self-energy paas. In particular, at T -+ 0 the conductance takes a very 
simple form 

o ( T  + 0) = 4xer2(-aReC; + yIm E:). (19) 

From (12) we have 

In the limit U < TK 

Re = -AU A = 2pCT2 J dE P(E)/E. 

In the opposite limiting case U >> TK 

1 Re = -2pJ2 j dE EP(E) ~U -_ 
The expression (21) defines t h e  electron mass renormalization 

According to the analysis made in [41 the effective coupling constant is large A - 
P~?/TK >> 1. It follows from (19) and (20) that the study of odd conductance makes 
it possible to determine only the energy scale for spin excitations, TK. Note that strong 
mass renormalization leading to the sharp increase of the electron density of states near the 
Fermi level is reflected in the tunnelling current only as a small perturbation. The reason 
is that, with the self-energy part depending only on frequency, there is a strict cancellation 
between the density of states renormalization and the 2 factor of the Green function. This 
result is weU known, for example, in the case of the electron-phonon interaction. 
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Measuring the even conductance, crc, we directly obtain the behaviour of the spin liquid 
spectral function P ( E ) .  Indeed, the general expression for the imaginary part of the self- 
energy (12) at the real axis and arbitrary temperature has the form 

Im =~ -npc? dE P ( E )  (2NE f nE+u + nE-rJ) (W 

where NE is the Bose distribution function. In the limit T --f 0 

U 
Im = - J C ~  dE P ( E )  

This result is very important because it allows us to investigate experimentally the character 
of the spin liquid excitations at low temperatures and their evolution with the increase of 
energy in the interval of order T'. 

If HF at E << TK are the neutral Fermi excitations above the spin liquid ground state 
then the specual function according to (9) behaves as 

P ( E )  - E.  (27) 

On the other hand, at high enough energies E - TK (or T - T i )  there is a tendency 
toward the appearance of independent localized spin excitations. and the P ( E )  dependence 
must change. Apparently, the Fermi statistics is only a limiting property of the spin liquid 
at E + 0, and one can expect a very early deviation from the linear dependence (27). 
As a possible scenario, another low-temperature scale characterizing this crossover sets 
in, Tmh << TK. One can define G O h  as the temperature where the quadratic dependence 
of the resistivity p - TZ breaks down. In many cases the quadratic law is replaced by 
the linear dependence p - T which takes place in a relatively wide temperature interval 
Tcoh < T < TK. Taking into account the fact that in the same temperature region the speciEc 
heat is still a linear function of T ,  and the magnetic susceptibility is almost independent of 
T ,  the idea of describing the spin excitations as a set of two-level systems with the constant 
distribution function over energy splittings seems to be very amactive. Indeed in this case 
P ( E )  - tanh(E/2T), and we get both the linear temperature dependence of the specific 
heat and resistivity and a very weak (as ln(T)) temperature dependence of the magnetic 
susceptibility. Note that in the general case the same kind of behaviour results from the 
rather arbiaary condition 

P ( E )  - f(EI2T) (W 
(at T -+ 0 this relation takes the form P ( E )  = PO = constant). Such a behaviour of the 
spectral function is reflected in the law a.( U) - IU I for the tunnelling conductance in the 
region of intermediate (I, and in the marginal behaviour of the self-energy p m  (see (20)) 

(29) 

This kind of behaviour could be realized if the system of quasi-independent spins with 
lower temperature Uansforms into the spin liquid with relaxation times of the effective 

Re zC," = -pJzp0 oln(o) Tcah < o < T K .  
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'molecular field' much longer than l/TK. The latter could result from the long-range 
character of the indirect interactions between the spins (- l /R3) .  

The problem of spin excitations in the absence of long-range ordering at T 3 0 as well 
as the problem of a possible Fermi liquid ground-state in spin systems is one of the most 
interesting. It Seems that we face the same difficulty in high-temperature superconductors 
(HTSC) where the interaction between the charge carriers and spin sub-system plays an 
essential role. We note that some properties following from (28) €or the spin spectral 
function are observed in HTSC compounds (the linear law for the resistivity p - T ,  the linear 
dependence of the tunnelling conductance U - ]U], the marginal self-energy part [131). The 
theory is obviously incomplete at this point, thus we find the possibility of determining the 
spectral function P ( E )  experimentally to be the real basis for the development of different 
theosetical approaches. 

At finite temperature the tunnelling conductance depends on the ratio between U, T and 
TK. If T < U < TK then all previous results remain valid. In the case U < T c TK only 
the even part of the conductance undergoes some change, which is effectively described 
by the replacement U -+ nT. In the limit T >> TK the even conductance U, acquires a 
constant value independent of T and U, while uo goes to zero. Indeed, at high tempemture 
P ( E )  - 1/ T due to the finite energy interval of the spin excitations. On the other hand, the 
leading term in the general expression (24) is connected with the Bose disaibution function 
N E  - T / E ,  thus cancelling the temperature dependence of Im XR. 

~ 

3. Tunnelling current in a narrow polaron band 

In this section we consider the tunnelling properties of HF systems with the f level Close to 
the Fermi level. Depending on the parameters the case of narrow f band or c-f hybridization 
may be considered. As mentioned above, the appearance of an extremely small energy scale 
in this case is connected with the electron (and phonon) polaron effect due to the Coulomb 
interaction with the wide conduction band. In its tun, the scattering of conduction electrons 
on the exciiations from the narrow band results in a strong mass renormalition of the 
c electron in close analogy with the previous discussion. We thus end up with a two- 
component Fermi liquid with heavy masses of both components (which ratio, however, 
may be arbitrary). 

We s t a n  a consideration of the case of two electron bands on the Fermi level. The 
Hamiltonian can be written as 

(30) 

If the bare width of the f band, A, is small as compared with the c bandwidth, W, then the 
interaction described by the last term in (30) leads to a drastic "wing of the f band down 
to the value, h K A. The contribution of the narrow band U, the tunnelling conductance 
has a sharp peak at U N K. In this respect the picture is quite different &om that defined 
by the renormalized conduction band. In the previous section we found that in spite of 
a strong mass enhancement near the Fermi surface, mf >> mB, which is present in the 
case under consideration as well, the tunnelling current from the conduction band is only 
slightly influenced by this renormalization. With the comparable values of the tunnelling 
mahix elements the current from the narrow band will dominate at small U, and we have 
to calculate only this particular contribution. 
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Let us start with the simplest case: T or U much larger than E. Then the problem is 
that of a localized f level and can be solved exactly. In this case p&) = 8(.$ --E'). and we 
can ignore the dependence of the tunnelling malrix element on the initial and final eleclron 
energies. Thus 

I = -4eT2(ep, E F ) ~ ~ ( E F )  dw (n, - n,+u)Im G R ( e ~ ,  0). (31) 

On the other hand, we can express the tunnelling current directly in terms of the blmsition 
probabilities between the localized f level and the usual metal state with energy w: 

J 

I =4e  dw [n i ( l -n ,+u)W(c ' -o ) -n ,+u( l -nr )W(w- -E ' ) ] .  (32) 

Using the equilibrium property W(-E) = W(E)exp(-E/T) we write this expression in 
the form 

s 
J I = 2e dw (n, - n,+u)[nfW(E'- w) + (1 - nt)W(o - e')]. (33) 

The probability of an incoherent " W i n g  transition with energy aansfer E was found for 
the case of an asymmetric double-well system in [14]: 

Here a is the dimensionless coupling constant which, in the Born approximation, has the 
fom (note that the coupling is non-zero only in the HF metal) 

(35) 2 a = Pc(IVk-k,l2). 

For an arbitrary scattering potential CY is expressed in terms of phase shifts at the Fermi 
energy [I51 

a = C(2l+ l)(8,/n)2. 
I 

The relaxation width of the f level due to its interaction with the conduction band is defined 
by Q: 

Q =&CUT. 

Now, comparing (31) with (33) and (34) we get 

2nT zcr n lr[l+ a + i(w - ~ ' ) / 2 n T l 1 ~  cosh(w/2T) 
I m G R = - ( T )  ( 0 - c f ) 2 + 9 2 ' -  r[i + 2 4  cosh(ef/2T) ' 

At T --f 0 and e' > 0: 
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This result coincides with the well known expression for the Green function of a deep hole, 
obtained by Noziem and deDominicis [U]. Knowing the imaginary part, we can restore 
the Green function: ~ , 

2nT 2n n ir[i + ( Y + ~ ( ~ - ~ ' ) / Z Z T J ~ ~  
GR = -(w) (0 - € 3 2  + nz ru + 2 4  

sinh[(o - ~ ' ) / 2 n T  + inal cosh(~'/2nT + ina) 
cosh(e'/ZT) 

X (40) 

We now calculate the tunnelling current. This can be done analytically if one make use 
of the time integral representation for the transition probability (34): 

As a result we find the following expression for the current 

where 

g = ~ x ~ T ~ ( E F ,  EF)P&F). (43) 

It is obvious that /(U, E') = . - I ( - U ,  --E'). 
The polaron effect which is T -  and U-dependent influences the tunnelling current. In 

the absence of the polaron effect, when (Y + 0 the general expression (43) transforms into 
the hivial case corresponding to the 8-functional peak in the f-eiectron density ofstates: 

I = E [ t a n h ( G )  2 -tanh($-)]. 

With (Y # 0 simple formulae can be obtained in the limit T -+ 0: 

and (I, cf << T: 

Thus at T + 0 the current is a non-analytic function of the elecaic potential over a 
wide range of U. The 8-functional peak effectively spreads out and the essential part of 
the spectral density is concentrated in relatively slow decaying tails. It is interesting that, 
for strong enough coupling, when [I = 1/2 the localized f level is seen in the tunnelling 
current just like an ordinary wide band. Physically, the reason is the strong shaking up of 
the polaron cloud around the f electron during its transition to the normal metal state. In 
the typical case a < 1/2. The non-analytic dependence on LI and T allows one to reveal 
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the narrow band in the shucture of charge fluctuations and to understand the role played by 
the interband Coulomb interaction in the formation of the HF state. 

Consider now the narrow band of finite width with the Fermi level inside the band. 
In the general case the situation does not change after polaron narrowing, and 6~ still lays 
inside the h interval. Within the framework of the tight-binding approximation the bare 
f-electron specmm has the well known form 
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where g is the displacement vector to the neighbouring equivalent site (for simplicity we 
assume here the cubic crystal symmetry). In [7l the +itionship between the electron motion 
in a narrow band and the band motion of a heavy particle (e.g. a proton) was discussed 
in detail. The only difference is that the non-adiabatic interval of the conduction band 
excitations interacting with the f electron is spread over the entire energy specbum while 
this interval is very narrow in the case of a heavy particle. Assuming that for a dense 
system the value of the polaron bandwidth has the same order of magnitude as that in the 
one-particle case, we find [7,14] 

Here A is the bandwidth corresponding to the dispersion law (47). The dimensionless 
coupling between the heavy and light electrons has the form (compare it with the expression 
for a, equation (35)) 

b = 2p: (IVk-k,l~[l -cos@ - k'lgl). (49) 

Let T <<E. Then in the narrow band we have a Fenni liquid state, &d neglecting the 
interaction between f electrons we may write the Green function in the form 

z GR= - 
o - E p + i 6  

where Fp is the f-electron dispersion law corresponding to the bandwidth E, and the Z 
factor corresponds to the overlap integral of the light electrons. We substitute Im GR into 
the general expression for the current (31). With U < a we find 

U 
a I =gz=. 

Comparing this result with (45). which should be the continuation of the band expression 
to the region U 2 h, we obtain an approximate formula for the Z factor: 

2a - 
z = (i) 

We thus find that h is the crossover point where the linear dependence of the current 
on voltage is replaced by an interaction-dependent power law I - U&. This result allows 
one to define the f-electron energy scale directly fiom the I ( U )  curves. The same crossover 
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takes place if we increase the temperature up to the z value when temperature fluctuations 
destroy the coherent motion in the f band [7]. 

One might wonder why the enormous mass renormalization in the Kondo-laltice case 
is not seen in the tunnelling current, while the heavy mass in the polaron band strongly 
inRuences the !(U) dependence. There are two reasons for this. First, in the case of a 
narrow band the bare f-electron mass is supposed to be large irrespective of the interaction 
effects. Second, for the momentum-independent self-energy part (which is the me of the 
conduction band renormalization) the effective mass enhancement is compensated by a small 
Z-factor. In the polaron picture the setf-energy part is also a function of momentum. It 
follows from (35) and (49) that Z-factor and z renormalimtions are govemed by different 
coupling constants. Note that band narrowing depends on the geometry of the particle 
motion in the crystal, while the transition probability between the two metals and the Z- 
factor are sensitive only to the on-site interaction with the conduction band 

4. Tunnelling current in the case of c-f hybridization 

The hybridization Hamiltonian leading to the f-electron delocalization in a crystal has the 
well known fonn 

The interband interaction leads to renormaliiation of the hybridization vertex which, contrary 
to widespread opinion, is essentially influenced by the momentum dependence of vh(k). 
In the general case there are two interaction channels having infrared divergence: The first 
one is connected with the orthogonality catastrophe for the overlap integral between the 
many-electron wavefunctions of the wide band and is govemed by the sum of all scatIering 
phase shifts (see (36)). The second channel is connected with the c elecmn rescattering in 
the final state due to its interaction with the extra hole in the f shell. This process, which is 
well-known in the theory of x-ray absorption and in the Kondo effect, results in the infrared 
enhancement of the transition matrix element 1151: 

(Wj6J)SJ". r (54) 

The phase shift 6, characterizing the scattering between the hybridized c electron and f 
hole is defined mainly by the symmetry of the hybridization matrix element. Indeed, the 
spherically symmetric part of the hybridization potential is zero due to the orthogonality 
between the c and f states in the absence of the hybridization potential. This means that 
in (54) we have j # 0. For a wideenough conduction band with dominant s-symmeby of 
electron wavefunctions the phase shift in (54) has the symmetry of a deep f hole, 6, = 63. 
The admixture of p- and d-symmetry waves in the wide band leads to a linear superposition 
of different contributions to the hybridization vertex, which renormaliiation is defined by 
the phase shifts 62 and 61 respectively. 

Usually the s-wave phase shift i s  the largest one for a short-range interaction. In most 
cases the sum of phase shifts squared in (36). which of come contains 80, tums out to be 
larger than the linear tenn 6,+ We make use of this notion and neglect below the scattering 
processes leading to (54). Thus, in the general case, we come to the polaron narrowing of 
the hybridization peak which might be responsible for the charged HF component. 
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In some model considerations the hybridization vertex is considered as a momentum- 
independent constant From the above discussion it is clear that in the general case this 
is a wrong starting point Indeed, the constant value in k-space means the 6-functional 
form of the hybridization potential in a coordinate space. But this is in contradiction with 
the on-site orthogonality between the c and f states. Nevertheless, if we neglect this point, 
the renormalization (54) will be defined by the s-scattering phase shift, and the value &/a 
may exceed the parameter Za, especially in the perturbation approach. In this case one can 
imitate the broadening of the hybridization peak instead of narrowing. 

In the mixed-valence regime far from the integer occupation of the f level the most 
important role is played by the interband c-f Coulomb interaction. Neglecting all intraband 
interactions we can write down the expression for the f-electron Green function as (see. 
e.g. (81): 

(55) 
where GF is the Green function of the localized f level, (41). Remember that in deriving 
(55)  we neglected the rescattering of the hybridized c electron on the f hole because of a 
small value of the scattering phase shift 6j+o in (54). Equation (55) can bs rewriaen in the 
form 

[G%o, k)l-’ = [G;(o)l-’ + IVI(~) I~G%,  k) 

where C R  is the self-energy part of c electrons. 
The tunnelling current is defined by the integral over k from the Green function (see 

(4)). The hybridization peak is connected with the k-regions, where cy is much larger than 
the characteristic bequency of the problem. On the other hand, at small electric potentia3 
we can drop the energy dependence of the tunnelling mattix element. Under these conditions 
the sum over k from the Green function has the form 

(57) 
The basic contribution to this sum comes from large cb values of order W. The second term 
i n  the brackets is of the order of GP(o)VZ/W. Obviously, one can define the characteristic 
frequency of forming the coherent state in the system from the relation 

Taking into account (39) we come to the following estimation for the hybridization peak 
width 

h/(1-24 

r* = r(g) (59) 

where 
With U >> r* the second term in (57) can be omitted and the tunnelling current is 

essentially the same as in the case of a localized f level. In the region T. U < r* the current 
is described by (51) with the replacement of a by r’. Just as in the case of a nmow band 
r* is the characteristic energy scale, where the crossover &om the temperature-independent 
anstant conductance to the interaction-dependent power law I - Ub (or I - U Th-’) 
is observed. Thus, both the narrow f-electron band and the hybridization peak are clearly 
seen in the tunnelling current in the mixed-valence case. 

is the bare hybridization width. 
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5. Concluding remarks 

So far we have ignored the electron-phonon interaction. However, considering the HF state 
in the case of a narrow band or hybridization peak with the characteristic frequency much 
less then Debye temperature, OD, we also have to include into the theory the phonon polaron 
effect. At low temperatures and small electric potentials the interaction with the phonon 
sub-system reveals itself only through the constant renormalization of the bare parameters 
A and r [71: 

where @ is the conventional phonon polaron exponent. Analogously, at U or T > E, r' the 
expressions (42), (45) and (46) must~be~multiplied by the small polaron factor exp(- 0). 
The situation changes significintly only at high temperatures or large electric potentials' 
compmble with the Debye temperature when-the polaron cloud is excited during the 
tunnelling transition. Obviously, in this lmii the tunnelling current is that comsponding to 
the localized f level and can be obtained from the relation (33). The transition probability 
incorporating the particle coupling to phonons was m found in a number of papers (see, for 
example, [161). In the context of the present discussion we shall not reproduce here the 
whole theory, but rather point out some essential results allowing us to estimate the role of 
the electron-phonon interaction in the formation of the HF state. 

The typical feature of the strong phonon polaron effect is the exponential dependence of 
the transition probability on'temperature and electric~potential at T and U > OD. Assuming 
0 >> 1 in the high-temperature limit T OD, U we find 

I - U m e x p ( -  2) 
where Ep is the polaron energy shift of the.f level ( E p  = iOo0). On the other hand, at 
large electric potentials U > OD, T we find for the transition probability 

the Gauss exponential dependence on U with the width &2 - @:a. As expected, at high 
temperatures and large electric potentials the exponentially small polaron factor is removed 
and the conductance has two specific peaks at 8 - Ep and er + .Ep with the separation 
between them being twice the polaron energy shift, or the so-called Stocks shift (see (62) 
and (33)). The existence of such a shift and its magnitude are. related to the phonon polaron 
narrowing of the f band. 

In this work we discussed a rather idealized picture for the tunnelling c m n t .  The 
scanning tunnelling microscope seems to be the most suitable experimental system. First, 
with this technique we have the possibility of studying the current from different atoms 
on the metal surface and may hope to separate the contributions from c and f bands. 
In the conventional tunnelling experiment both the c and f electrons tunnel through the 
dielectric barrier, and the problem of current shunting by conduction elecmns may present 
an obstacle in  analysing the contribution from the narrow f band. Second, we have no extra 
inelastic interaction in the vacuum space that can modify the I(U) dependence essentially 
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and which is the case for the dielectric barriers. Third, we expect the smallest distortion of 
the bulk electron properties for the case of a metal-vacuum surface. We have calcukated the 
tunnelling current within the perturbation theory in the uansition matrix element ignoring 
the Coulomb interaction effects between the I ~ F  and normal metal, which are of importance 
only in very small tunnel junctions. The physics of the tunnelling process is contained in 
the mahix elements Tss,, which need to be calculated in a way that models the experimental 
setup. 

The study of the felectron specual function with the use of x-ray absorption 
specuoscopy introduces an additional problem connected with the infrared renormalization 
of the nansition matrix element [151, which has the typical form (54), and within the transfer 
Hamiltonian approach is equivalent to the substitution 
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Obviously, this effect will influence the interpretation of the experimental data. 
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