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The tunnelling current in heavy-fermion systems
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“Kurcchatov Institute’ Russian Science Centre, Mascow 123182, Russia

Received 18 January 1993

Abstract. The role of f-electron charge fluctuations im heavy-fermion systems is discussed, and -
the tunnelling current as a probe of charge spectral density near the Femmj level is calculated
within pertutbation theory using the transfer Hamiltonian approach. It is shown that in the
case of integer valence systems only ¢ electrons from a wide conduction band contribute to
the tunnelling current. One finds only a weak reflection of the strong mass enhancement in
the I (V) curves, bat the tuanelling conductance (and its derivative) can still be used for the
study of spin excitations in the liquid formed by f spins. An examination is then made of the
mixed-valence-type heavy-fermion compounds. In this case f electrons dominate in the current,
and in some regimes ihe exact results for the asbitrary Coulomb interaction between the c and {
electrons are derived. It is shown that because of the ‘shaking up’ of the polaren cloud around
the { electron during the tunnelling process the current acquires a non-anaiytic dependence on
electric potential and temperature. Both narow f-band and o—f hybridization peaks are studied
in detail.

1. Introduction

The question of whether charge or spin degrees of freedom dominate in the heavy-fermion
(HF) ground staie seems 1o be of primary importance in understanding the nature of HF
systems. In this connection tunnelling properties of these systems, which are governed by
tunnelling transitions of charged particles, might be very inferesting.

. Universal behaviour of the HF systems. which can be characterized by a single energy
parameter Ty, makes one think about the comimnon nature of these systems (see, for
example, [1,2]). However, even a brief analysis reveals two classes of HF systems with
quite different microscopic propertics. The first class is characterized by nearly inieger
valence of the f ion, the deep position of the f level and strong on-site Coulomb repulsion.
Ce-based compounds are the typical examples. It is generally believed that these systems are
adequately described by the Kondo-lattice Hamiltonian considered as the limiting version
of the periodic Anderson model. One can expect that electrons from the deep f shell will
give negligible contribution to the tunnelling current at small voltages |U| < €5 — .
this case the current is defined by the tunnelling of electrons from the wide conduction
band which, itself, is strongly renormalized by inelastic scattering on the spin sub-system.
In [3,4] the idea was proposed to ascribe the low-frequency HF peak in the density of states
to neutral excitations of the spin liquid. Low-temperature excitations in this liquid obey
the Fermi statistics and carry no charge. In its tum, the interaction between the conduction
electrons and spin liquid results in 2 strong elecron mass enhancement, m? > mp (where
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mg is the bare band mass) which, however, in the general case is smaller than the effective
mass, my, characterizing the low-temperature thermodynamics of HF systems.

Below, we show that large enhancement of the conduction band density of states at
energies € < Ty is only slightly reflected in the structure of the tunnelling current. This
important result should be compared with mean-field theory (see, for example, [3, 6]), which
predicts a noticeable contribution of { electrons to the current with strong dependence [(T)
at small U/. As discussed in [3] we believe that the appearance of the f-glectron charge
near the Fermi energy in this case is connected with the artificial charge transfer to the spin
degrees of freedom. Nevertheless, the derivatives of the current over voltage are directly
related to the spectral density of spin excitations, In fact, one can use this possibility for
studying the low-temperature properties of the spin liquid.

An itinerant (mizxed-valence) type of f-electron excitations is characteristic of the case
with the f level close to the Fermi energy. The formation of the HF state couid then be
connected with the f-electron charge degrees of freedom. An extremely narrow peak (10K)
in the density of states could result from a strong electron (and phonon) polaron effect
due to the Coulomb interaction between the f electrons in a moderately narrow band and
the conduction electrons in a wide band. The same effect of polaron narrowing is found
for the conventional hybridization Hamiltonian [7,8]. In both cases the f electrons may
give the dominant contribution 0 the tunnelling current, One can clearly reveal polaron
renormalizations in the non-irivial current-voltage curves which appear to be the result of
‘shaking up’ the polaron cloud around the f electron during the wnnelling. The important
thing is that 7 (U) (or dI/dU} reflects the existence of the HF peak in the density of states.
Thus, the mnnelling current behaves quite differently in the Kondo-lattice and mized-valence
regimes, and can be used for the comparative analysis between HF systems with the goal to
reveat the role of charge fiuctuations in formation of the HF state.

2. Tunzelling corrent in the integer valence case (Kondo lattice)

Let us consider the tunnelling between the HF and usual metal. We assume an idealized
picture, implying unperturbed electronic properties of both metals up to the boundary of
the barrier, which could be either a vacuum separation or a dielecttic layer. In this case

the current can be calculated within the lowest-order perturbation theory using the transfer
Hamiltonian approach: :

Hy = Z Tk (Chiy ko + Ay Cko)- 1
ko

Here T is the tunnelling matrix element, cx, and ay, are the electron annihilation operators
in HF and usual metals respectively, Within the framework of perturbation theory in the
tunneiling amplitude the general expression for the tunnelling current has the form [9]

I=dxe)y | Tyl f o 4’ 8+ U — &) — 1) Aclp, ) Ad(p', ) ()
r
where

1
Ai(p, w) = —=Im GX(p, ») i=a,c. 3
14
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Here GR(p, w) is the retarded Green function, the indexes ¢, @ are related to the HF and usual
metals, and n,, is the Fermi distribution function. Coulomb blockade effects in tunnelling
between the HF and normal metal are ignored in this paper assuming not too small a size
for the tunnel junction.

Suppose, that the density of states in the metal ¢ is a weak function of energy near the
Fermi level with small electron—phonon renormalizations. Then the function 4,(p’, ") can
be written in the form | -

AP, 0"} ~ (0 — €p)

at least in the small frequency range characteristic of the HF metal. Substiniting this
expression into (2) we ﬁnd

I= 4:192 [Ty * [dco 3w + U — )Mo — Rort) Ac(D, ©). @
P

It is essential that the answer depends only on the one-particle Green function. This is an
obvious simplification as compared with the usual conductwuy, which muost be calculated
from the two-particle Green function.

In this section we consider HF systems with the f level deep enough under the Fermi
energy. If we assume as well the on-site Hubbard repulsion between f electrons to be much
larger than e — €f, we then come to the typical limiting case of the periodic Anderson
model usoally described by the Kondo-lattice Hamiltonian:

H = Hp+ Hp = Eek CF Cho + J Zai&' )]
- ko i

where o; = C;t,cf&'a is the conduction electron spin operator at the site i, ¢ is the Pauli
matrix, and 'S; is the f-electron spin operator. The interaction term in the Hamiltonian
(5) corresponds to the spin exchange between the wide-band electrons and the localized -
1 shell. This Hamiltonian results in an indirect inieraction between the spins, the local
Kondo-renormalization of the spin exchange efc. These interactions connected with the
virtual high-frequency excitations in the wide band lead to the adiabatic spectrum of spin
excitations in the narrow energy interval of order of Tg. In close analogy with the well
known problem of deriving the adiabatic phonon spectrum in metals [10] one can neglect
afterwards all non-adiabatic corrections to the specttum of spin excitations. Bearing this fact
in mind we can write down the effective low-frequency Hamiltonian in a form corresponding
to the two-component Fermi liguid:

H = Hg + Hg + Hiy ©

where Hg, is the spin liquid Hamiltonian, and Hj, contains only the low-energy part of
the interaction (in the general case with another exchange coupling 7). Below, we assume
a weak exchange interaction, p.J < 1, where p. is the c-electron density of states on the
Fermi surface. In this case we can neglect veriex renormalization in fi.

For the Kondo-lattice Hamiltonian the tunnelling current is entirely defined by
conduction elecirons renormalized through their interaction with the spin liquid. To find
the Green function GX(p, ) we have to evaluate its self-energy part, which to the lowest
order in p.J is described by the diagram

e -7, wm)
(@) = 7 TZ[ (27)? i€u_m ~&y — Zn- (@) @)
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Here €, = nT(2n + 1) and w,, = 2z Tm are the Matsubara frequencies., and &, = ¢, — 1
is the energy of the electron excitations. In the general case the spin liquid polarization
operator has the form

¢ w)-fdeP( Byl ' ®
q, W, ) = A q. a)gl_*_Ez

The spectral density P(E) is the internal characteristic of the spin liquid. If excitations in
this liquid are fermions, then

P(g, BY=") (e — ne)8(Ex — B — EVpsg . ©)
kK’

We are interested in the renormalization of the electron spectrum at energies and
temperatures within the interval ~ T3. In this case the integration over small § gives
the main contribution to the self-energy part, therefore one can integrate separately over
the energy &y and the momentum direction p'/p’ on the Fermi surface. Neglecting the
contributions of order of (,oc"f)2 and Tg/ W (where W ~ ¢g is the electron bandwidth) one
has the universal expression for the self-energy part

S = —inpd T Z Tin (10)
[ ={(I{p~p. o)} (11

where (...} stands for the average over the angle between the vectors p and p’ on the Fermi

surface. The sum over m from 2E/(w? + E*) in (8) is a standard one (see [11]). Thus we
get .

) ] E 1 e, —iE 1 ¢, +iE
T, = —po P il ~ - -
et [dE (E) (m’cochT +l11(2+ wT ) \Il(2+ T )) sgn(n)
(12)

where W is the logarithmic derivative of the [-function. To find the retarded Green function
which is analytic in the upper half-planc we make use of the analytic properties of the ¥
function and simply repiace ¢, in this expression with —iw,

We now return to (4) and complete the averaging over the momenta p and p’ on the
Fermi surface, making use of the fact that the self-energy part is independent of p. Then

I = dre f 30 (o — o) f 8 THE 0+ U)put)palo+ UYAE, ). a3

Here T7(£,4&’) is the averaged value of the tunnelling matrix element modulus, squared.
Assuming a weak non-singular dependence of T2p.p, on & and &' for small arguments, we
can restrict ourselves by linear expansion:

T2E, £ 0:(E) 02"y = 13(1 + ok + BE"). (14)

Usuoally the coefficients « and B reflect the exponential dependence of the tunnelling
amplitude on the electron energy [12]. Substituting this expansion back into (13), and
using the fact that the A, function has a sharp peak at & & «, we find

R f > (P — Ros0) Po 1)

Po=1+a{w—ReI5)+ flw+ U)+ yIm L. (16)
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The last term ariscs from the difference between the Im G® and the real § function. Note
that there is no special smallness in y with respect to the coefficients o and 8.
In the absence of ¢lectron renormatization the expression for the current takes the form

[ =4zet’U[1 ~ 3o~ UL, k a7

Taking into account that «, § and y are of the order of 1/W (or §/W, where § is the
tunnelling exponent) we find that correction to the zero-order expression is small if the scale
of the electron spectrum renormahzanon is small compared with the bandwidth. However,
one can easily extract this comrection

Al = 4met® f dw (1o — oru)(—aRe 24 yImzh (18)

experimentally becanse its dispersion is concentrated in the region of very small electric
potential U ~ Tk. Thus, all information about the interaction can be obtained by measuring
the conductance, o (/) = df/dU and its derivative, ¢*/ /d2U. The essential fact is that
studying odd. o, and even, o,, conductances we can separate the contributions from real
and imaginary sclf-epergy parts. In particular, at T — 0 the conductance. takes a very
simple form

o(T — 0) = dmer’(—aRe If + yIM EF). (1%

From {12) we have

E+U
Re zR =—p.J de P(E)In \ i} . (20
In the limit UV <« Tk
Re TR = AU A=20.T f dE P(E)/E. 1
In the opposite Limitif}g case U Ty
R i ! - - -
ReZR = 20,7 | dE EP(E) iR - (22)

The expreséion (21) defines the electron mass renormalization
m?: =mp(l + ). ) (23)

Accordmg to the ana1y51s made in [4] the effective coupling consiant is large A ~ -

ch /T > 1. It follows from {19) and (20) that the study of .odd conductance makes
it possible to determine only the energy scale for spin excitations, Tx. Note that strong
mass renormalization leading to the sharp increase of the eleciron density of states near the
Fermi Ievel is refiected in the tuanelling current only as a small perturbation, The reason
is that, with the self-energy part depending only on frequency, there is a strict cancellation
between the density of states renormalization and the Z factor of the Green function. This
result is well known, for example, in the case of the electron—-phonon interaction.
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Measuring the even conductance, o,, we direcfly obtain the behaviour of the spin liquid

spectral function P(E). Indeed, the general expression for the imaginary part of the seli-
energy (12) at the real axis and arbitrary temperature has the form

Im =7 =’“-'¢,0c72de P(E) 2Ng+ gy + ne-u) (24)

where Ny is the Bose distribution function. In the limit T — 0

U
m3R = —zp.d f dE P(E) : (25)
0
and
do. —
= —agetty np.d PU). (26)

This result is very important because it allows us to investigate experimentally the character
of the spin Hquid excitations at low temperatures and their evolution with the increase of
energy in the interval of order Tx.

If HF at £ <« Tk are the neutral Fermi excitations above the spin liquid ground state
then the spectral function according to (9) behaves as

P(Ey~E. @7

On the other hand, at high enough cnergies E ~ Tg (or T ~ Tx) there is a tendency
toward the appearance of independent localized spin excitations. and the P(E) dependence
must change. Apparently, the Fermi statistics is only a Iimiting property of the spin Liquid
at £ — 0, and one can expect a very early deviation from the linear dependence (27).
As a possible scenario, another low-temperature scale characterizing this crossover sets
in, T < Tx. One can define T, as the temperature where the quadratic dependence
of the resistivity o ~ T2 breaks down. In many cases the quadratic law is replaced by
the linear dependence p ~ T which takes place in a relatively wide temperature interval
Teoh < T < Tx. Taking into account the fact that in the same temperature region the specific
heat is still a linear function of T, and the magnetic susceptibility is almest independent of
T, the idea of describing the spin excitations as a set of two-level systems with the consiant
distribution function over energy splittings seems to be very attractive. Indeed, in this case
P(E) ~ tanh(E/2T), and we get both the linear temperature dependence of the specific
heat and resistivity and a very weak (as In{T)) temperature dependence of the magnetic
susceptiibility. Note that in the general case the same kind of behaviour results from the
rather arbitrary condition

P{E) ~ f(E/2T) (28}

{at T — 0 this relation takes the form P{E) = P, = constant). Such a behaviour of the
spectral function is reflected in the law o.(U) ~ |U] for the tunnelling conductance in the
region of intermediate U, and in the marginal behaviour of the self-energy part (see (20))

Re IR = —p,7° Py win(w) Toon < @ < Tg. (29)
w

This kind of behaviour could be realized if the system of quasi-independent spins with
lower temperature transforms into the spin liguid with relaxation times of the effective
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‘molecular field’” much longer than 1/7;. The latter could result from the long-range
character of the indirect interactions between the spins (~ 1/R?).

The problem of spin excitations in the absence of long-range ordering at T — 0 as well
as the problem of a possible Fermi liquid ground-state in spin systems is one of the most
interesting. It seems that we face the same difficulty in high-temperature superconductors
(HTSC) where the interaction between the charge carriers and spin sub-system plays an
essential role. 'We nowe thar some properties following from {28) for the spin spectral
function are observed in HTSC compounds (the linear law for the resistivity o ~ T, the linear
dependence of the tunnelling conductance o ~ |U/}, the marginal seif-energy part [13]). The
theory is obviously incomplete at this point, thus we find the possibility of determining the
spectral function F(E) experimentally to be the real basis for the development of different
theoretical approacies. )

At finite temperature the tunnelling conductance depends on the ratio between U, T and
Tx. If T < U < Ti then all previous results remain valid. In the case U < T < Tk only
the even part of the conductance undergoes some change, which is effectively described
by the replacement UV — x 7. In the limit T > Tk the even conductance o, acquires a
constant value independent of T and U, while o, goes to zero. Indeed, at high temperature
P(E) ~ 1/T due to the finite energy interval of the spin excitations. On the other hand, the
Ieading term in the general expression (24) is connected with the Bose distribution function
Ng ~ T/E, thus cancelling the temperature dependence of Im ZR.

3. Tunneiling current in a narrow polaron band

In this section we consider the tunnelling properties of HF systems with the f level close o
the Fermi level. Depending on the parameters the case of narrow f band or c—f hybridization
may be considered. As mentioned above, the appearance of an extremely small energy scale
in this case is connected with the electron (and phonon) polaron effect due to the Coutomb
interaction with the wide conduction band. In its turn, the scattering of conduction electrons
on the excitations from the narrow band results in a4 strong mass renormalization of the
¢ electron in close analogy with the previous discussion. We thus end up with a two-
component Fermi liguid with heavy masses of both componems {which ratio, however,
may be arbitrary),

We start a consideration of the case of two electron bands on the Fermi level. The

- Hamiltonian can be writien as

H = Hp + HsL + H = Z (fk Cko-ckcr + Ek fkufkcr + Z Ve fkgcy Jck’—qo Trgo-
kkigoo!

(30)

If the bare width of the f band, A, is small as compared with the ¢ bandwidth, W, then the
interaction described by the last term in (30) leads to a drastic narrowing of the f band down
to the value, A « A. The contibution of the narrow band to the tunnelling conductance
has 'a sharp peak at ¥ ~ A, In this respect the picame is quite different from that defined
by the renormalized conduction band. In the previous section we found that in spite of
a strong mass enhancement near the Fermi surface, m} >» mp, which is present in the
case under consideration as well, the tunnelling current from the conduction band is only
slightly influenced by this renormalization. With the comparable values of the tunnelling
mafrix elements the current from the narrow band will dominate at smail ¥/, and we have
to calculate only this particular contribution.
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Let us start with the simplest case: T or U/ much larger than A, Then the problem is
that of a localized f leve] and can be solved exactly. In this case pr(£) = 8(¢ — &f), and we

can ignore the dependence of the tunnelling matrix element on the initial and final electron
energies, Thus

I = —4eT ez, €)paler) f o (o — fiysp)Im GR(er, o). (31)

On the other hand, we can express the tunnelling current directly in terms of the transition
probabilities between the localized f level and the usual metal state with energy w:

I =4e f dow [n:(1 = nor)W(e' — ) — nprv(l ~n)Wiw—€H].  (32)

Using the equilibrium property W{—~E) = W{(E) exp(—E/T) we write this expression in
the form

=2 [ o> (g, — asv)[ReW (€T — @) + (1 — ne)W(w — €h). (33)

The probability of an incoherent tunnelling transition with energy tansfer £ was found for
the case of an asymmetric double-well system in [14]:

2w i 2
2_71—1") Q@ [TH+e+iB/2nTI ppr (34)

W(E) = 2T2(EF, €F) Pa ( W E? 402 Tt + 2]

Here & is the dimensionless coupling constant which, in the Born approximation, has the
form (note that the coupling is non-zero only in the HF meial)

o = pX{|Vi—p[%). (35)

For an arbitrary scattering potential « is expressed in terms of phase shifts at the Fermi
energy [13]

o= (2 +1)E/mP ' (36)
I

The relaxation width of the f level due to ifs interaction with the conduction band is defined
by £2:

Q=2xaT. (37)

Now, comparing (31) with (33) and (34) we get

R 2T\ Q IT[1 4 & + iw — €7) /22 T cosh(w/2T)
ImGt =— o . (3®
W ) (o—ef2+Q2 T 4+ 20 coshiet/2T)
AtT > 0and & > O
T w—ef 1 ¢
MG =-14"e\" W ) TRy ©“7°¢ (39)

0 o < e,
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This result coincides with the well known expression for the Green function of a deep hole,
obtained by Nozieres and deDominicis [15]. K.nowmg the imaginary part, we can restore
the Green function:

GR = _(2:1'1")2“ Q IT[1 + @+ i{w — eN/2n T
w (w—e2+02 1+ 2a]
smh[(a: —e9/2rT +inalcosh(e /27T + um) 40)
cosh{ef/2T)

We now calculate the tunnelling cuzrent. This can be done analytically if one make use
of the time integral representation for the transition probability (34):

_ _}_ 0 iEr ' —ixT 2 ' ’
W(E)———?rRefo dr e (-—-——W sinh(;rrT:)) . (41)

As a result we find the following expression for the current

1

[ sinh(U /2T)
=80T + 20

cosh{e?/2T)

2
(2’;,T) [C[1/2+ & +i(U + €D /22T (42)

where

g = 4meTeF, e5)puler). ' ’ 43)

It is obvious that [{U/, ef) = —J (—U, —eD).

" The polaron effect which is T- and I/-dependent influences the tunnelling current. In
the absence of the polaron effect, when & — 0 the general expression (43) transforms into
the trivial case comresponding to the 5-functional peak in the f-electron density of states:

g U+e e 7
I= E|:tanh( o7 ) —tanh(ir-)] (44)

With o # 0 simple formulae can be obtained in the limit T — O

= _ 4
gZF(l+2a)( W ) (U +¢Y) ¢ <0 (45)
and U, ef € T
r2(1/2 + o) (2::1")2“ U . 6)
47 (1 + 20) T

Thus at T — 0 the corrent is a non-analytic function of the electric potential over a
wide range of /. The d-functional peak effectively spreads out and the essential part of
the spectral density is concentrated in relatively slow decaying tails. It is interesting that,
for strong enough coupling, when o = 1/2 the localized f level is seen in the tunnelling
current just like an ordinary wide band. Physically, the reason is the strong shaking up of
the polaron cloud around the f electron during its transition to the normal metal state. In
the typical case & < 1/2. The non-analytic dependence on &/ and T allows one {0 reveal
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the narrow band in the structure of charge fuctuations and to understand the role played by
the interband Coulomb interaction in the formation of the HF state.

Consider now the narrow band of finite width with the Fermi level inside the band.
In the general case the simation does not change after polaron narrowing, and er still lays
inside the A interval. Within the framework of the tight-binding approximation the bare
f-electron specttum has the well known form

Ep=¢ —Ag) e? @7
g

where g is the displacement vector to the neighbouring equivalent site (for simplicity we
assume here the cubic crystal symmetry). In [7] the relationship between the electron motion
in a narrow band and the band motion of a heavy particle (e.g. a proton) was discussed
in detail. The only difference is that the non-adiabatic interval of the conduction band
excitations interacting with the f electron is spread over the entire energy spectrum while
this interval is very narrow in the case of a heavy particle. Assuming that for a dense
sysiem the value of the polaron bandwidth has the same order of magnitude as that in the
one-particle case, we find [7, 14]

_ A &/{1-b)
~ A — ) 4
A A( w) 48)

Here A is the bandwidth corresponding to the dispersion law (47). The dimensionless
coupling between the heavy and light electrons has the form (compare it with the expression
for a, equation (35))

b = 2p2 {|Vi-p |41 — cos(k — k)gl). (49

Let T < A. Then in the narrow band we have a Fermi liguid state, and neglecting the
interaction between f electrons we may write the Green function in the form

Z
GR= ———— (50)
w— Ep+1i8
where E,, is the f-electron dispersion law corresponding to the bandwidth A, and the Z

factor corresponds to the overlap integral of the light electrons. We substitute Im G® into
the general expression for the current (31}, With U < A we find

U
82 = 63

Comparing this result with (45), which should be the continuation of the band expression
to the region U 2 A, we obtain an approximate formula for the Z factor:

- 2a
7~ (%) . (52)

We thus find that A is the crossover point where the linear dependence of the current
on voltage is replaced by an interaction-dependent power law I ~ U%*, This result allows
one 1o define the f-electron energy scale directly from the I(U7) curves. The same crossover
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takes place if we increase the temperature up to the A value when temperature fluctuations
destroy the coherent motion in the f band [7]. '

One might wonder why the enormous mass renormalization in the Kondo-lattice case
is not seen in the tunnelling corrent, while the heavy mass in the polaron band strongly
influences the I{U) dependence. There are two reasons for this. First, in the case of a
narrow band the bare f-clectron mass is supposed (o be large irrespective of the interaction
effects. Second, for the momentum-independent self-energy part (which is the case of the
conduction band renormalization) the effective mass enhancement is compensated by a small
Z-factor. In the polaron picture the self-energy part is also a function of momentum. It
follows from (35) and (49) that Z-factor and A renormalizations are governed by different
coupling constants. Note that band narrowing depends on the geometry of the particle
motion in the crystal, while the transition probability between the two metals and the Z-
factor are sensitive only to the on-site interaction with the conduction band.

4. Tennelling current in the case of c—f hybridization

The hybridization Hamilionian leading to the f-electron delocalization in a crystal has the
-well known form -

Hhy= 3 Vo) (s Cho + i fro)- (53)
ke

The interband interaction leads to renormalization of the hybridization vertex which, contrary
to widespread opinion, is essentially influenced by the momentum dependence of Vi (k).
In the general case there are two interaction channels having infrared divergence. The first
one is connected with the orthogonality catastrophe for the overlap integral between the
many-¢lectron wavefunctions of the wide band and is governed by the sum of all scattering
phase shifis (see (36)). The second channet is connected with the ¢ eleciron rescatiering in
the final state due to its interaction with the extra hole in the f shell. This process, which is
well-known in the theory of x-ray absorption and in the Kondo effect, resulis in the infrared
enhancement of the transition matrix element [15]:

- (Wjw)¥™, Lo : (54

The phase shift §; characterizing the scattering between the hybridized ¢ electron and f
hole is defined mainly by the symmetry of the hybridization matrix element. Indeed, the
spherically symmetric part of the hybridization potential is zero due to the orthogonality
between the ¢ and f states in the absence of the hybridization potential. This means that
in (34) we have j # 0. For a wide-enough conduction band with dominant s-symmetry of
electron wavefunctions the phase shift in (54) has the symmetry of a deep f hole, §; = §s.
The admixture of p- and d-symmetry waves in the wide band leads to a linear superposition
of different contributions to the hybridization vertex, which renormalization is defined by
the phase shifts d; and §; respectively.

Usually the s-wave phase shift is the largest one for a short-range interaction. In most
cases the sum of phase shifts squared in (36), which of course containis &y, tums out to be
larger than the linear term §;.0. We make use of this notion and neglect below the scattering
processes leading to (54). Thus, in the general case, we come to the polaron narrowing of
the hybridization peak which might be responsible for the charged HF component.
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In some model considerations the hybridization vertex is considered as a momentum-
independent constant. From the above discussion it is clear that in the general case this
is a wrong starting point. Indeed, the constant value in k-space means the §-functional
form of the hybridization potential in 4 coordinate space. But this is in contradiction with
the on-site orthogonality between the ¢ and f states. Nevertheless, if we neglect this point,
the renormalization (54) will be defined by the s-scattering phase shift, and the value §/xr
may exceed the parameter 2o, especially in the perturbation approach. In this case one can
imitate the broadening of the hybridization peak instead of narrowing.

In the mixed-valence regime far from the integer occupation of the f level the most
important role is played by the interband ¢—f Coulomb interaction, Neglecting all intraband
interactions we can write down the expression for the f-electron Green function as (see
e.g. (81

[GMw, B)I™F = [GR ()] ™! + ViR GCR(w, k) (55)

where GF is the Green function of the localized f level, (41). Remember that in deriving
{55) we neglected the rescatiering of the hybridized ¢ clecron on the f hole becanse of a
smail valve of the scattering phase shift 5« in (54). Equation (55) can be rewritten in the
form

fo—e — 2w, B GMw)
w— ex — ZR(w, k) — [Vu(k) 2GR w)
where ER is the self-energy part of ¢ electrons.

The tunnelling current is defined by the integral over & from the Green function (see
(4)). The hybridization peak is connected with the k-regions, where ; is much larger than
the characteristic frequency of the problem. On the other hand, at small electric potentials

we can drop the energy dependence of the unnelling matrix eiement. Under these conditions
the sum over k& from the Green function has the form '

Ry — R o (R _ R [Va(k) 2 )
Gfte) = G B G‘(“’)(I RO e T B - TG )
57

The basic contribution to this sum comes from large €, values of order W. The second term
in the brackets is of the order of G ?(w) V?/W. Obviously, one can define the characteristic
frequency of forming the coherent state in the system from the relation

G w. k) =

(56)

VZ
G}‘(w)-“T a1 (58)
Taking into account (39) we come (o the following estimation for the hybridization peak
width
O\ 2/ (-2
MaT — 59
(%) 59

where I" is the bare hybridization width.

With U/ >» '™ the second term in (57) can be omitted and the tunnelling current is
essentially the same as in the case of a localized { level. In the region T, U < T™ the current
is described by (51) with the replacement of A by I'*. Just as in the case of a narrow band
'™ is the characteristic energy scale, where the crossover from the temperanmre-independent
constant conductance to the interaction-dependent power law I ~ U (or [ ~ U T 1)
is observed. Thus, both the namow f-clectron band and the hybridization peak are clearly
seen in the tunnelling current in the mixed-valence case.
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5. Concluding remarks

So far we have ignored the electron—phonon interaction. However, considering the HF state
in the case of a narow band or hybridization peak with the characteristic frequency much
less then Debye temperature, ®p, we also have to include into the theory the phonon polaron
effect. At low temperatures and small electric potentials the interaction with the phonon
sub-systern reveals -itself only through the constant renormalization of the bare parameters
A and r (7L

— & ' _
A Aexp(— T——b) *—»r* exp(— %&') i (60)

where & is the conventional phonon polaron exponent. Analogously, at I/ or T > A, I'* the
expressions (42}, (45} and (46) must-be multiplied by the small polaron factor exp(— ).
The situation changes significantly only at high temperatures or large electric poientials
comparable with the Debye temperature when- the polaron cloud is excited during the
tunnelling transition. Obviously, in this limit the tunnelling current is that corresponding to
the localized f level and can be obtained from the relation (33). The ransition probability
incorporating the particle coupling to phonons was found in a number of papers (see, for
example, [16]). In the context of the present discussion we shall not reproduce here the
whole theory, but rather point out some essential results alfowing us to estimate the role of
the electron—phonon interaction in the formation of the HF state,

The typical feature of the strong phonon polaron effect is the exponential dependence of
the transition probability on temperature and electric potential at T and U > @p. Assuming
& > 1 in the high-temperature limit T 2 Gp, I/ we find

- I ~U/=/E,Texp| — =~ ' -- 61
n/E, exp( 4T) (61}
where E; is the polaron energy shift of the f level (E;, 3 %@Dd)). On the other hand, at
large electvic potentials U/ 2> ©p, T we find for the transition probability

) R o ’
W(U)Ngexp(—’%) - (62

the Gaiss exponential depéndence on U with the width £2 ~ @ ®. As expected, at high
temperatures and large electric potentials the exponentially smail polaron factor is removed
and the conductance has two specific peaks at ef — E, and ¢’ + E, with the separation
between them being twice the polaron energy shift, or the so-called Stocks shift {see (62)
and (33)). The existence of such a shift and its magnitude are related to the phonon polaron
narrowing of the f band.

In this work we discussed a rather idealized picture for the tunnellmg current. The
scanning tunnelling microscope seems to be the most suitable experimental system. First,
with this technique we have the possibility of studying the current from different atoms
on the metal surface and may hope to separate the contributions from ¢ and f bands.
In the conventional tunnelling experiment both the ¢ and [ elecirons tunnel through the
dielectric barrier, and the problem of current shunting by conduction electrons may present
an obstacle in analysing the contribution from the narrow f band. Second, we have no extra
inelastic interaction in the vacuum space that can modify the /() dependence essentially
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and which is the case for the dielectric barriers. Third, we expect the smallest distortion of
the bulk electron properties for the case of a metal-vacuum surface. We have calculated the
tunnelling current within the perturbation theory in the transition matrix element ignoring
the Coulomb interaction effects between the HF and normal metal, which are of importance
only in very small tunnel junctions. The physics of the mnnelling process is contained in
the matrix elements Trx:, which need to be calculated in a way that models the experimental
setup.

The study of the f-electron spectral function with the use of x-ray absorption
spectroscopy introduces an additional problem connected with the infrared renormalization
of the transition matrix element [15], which has the typical form (54), and within the transfer
Hamiltonian approach is equivalent to the snbstitution

8 frr—20!
Ty = Ty (;) T=0. (63)

Qbviously, this effect will influence the interpretation of the experimental data,
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